Deep Learning Techniques for Automated Analysis and Processing of High Resolution Medical Imaging
- Jorge Novo Buján Co-director
- José Rouco Maseda Co-director
Universidade de defensa: Universidade da Coruña
Fecha de defensa: 07 de febreiro de 2022
- C. I. Sánchez Gutiérrez Presidente/a
- Laura M. Castro Secretario/a
- José Luis Alba Castro Vogal
Tipo: Tese
Resumo
As técnicas de imaxe teñen un papel destacado na práctica clínica moderna de numerosas especialidades médicas. Por exemplo, en oftalmoloxía é común o uso de diferentes técnicas de imaxe para visualizar e estudar o fondo de ollo. Neste contexto, os métodos automáticos de análises de imaxe son clave para facilitar o diagn ostico precoz e o tratamento adecuado de diversas enfermidades. Na actualidade, os algoritmos de aprendizaxe profunda xa demostraron un notable rendemento en diferentes tarefas de análises de imaxe. Con todo, estes métodos adoitan necesitar grandes cantidades de datos etiquetos para o adestramento das redes neuronais profundas. Isto complica a adopción dos métodos de aprendizaxe profunda, especialmente en áreas onde os conxuntos masivos de datos etiquetados son máis difíciles de obter, como é o caso da imaxe médica. Esta tese ten como obxectivo explorar novos métodos para a análise automática de imaxe médica, concretamente en oftalmoloxía. Neste sentido, o foco principal é o desenvolvemento de novos métodos baseados en aprendizaxe profunda que non requiran grandes cantidades de datos etiquetados para o adestramento e poidan aplicarse a imaxes de alta resolución. Para iso, presentamos un novo paradigma que permite aproveitar modalidades de imaxe complementarias non etiquetadas para o adestramento de redes neuronais profundas. Ademais, tamén desenvolvemos novos métodos para a análise en detalle das imaxes do fondo de ollo. Neste sentido, esta tese explora a análise de estruturas retinianas relevantes, así como o diagnóstico de diferentes enfermidades da retina. En xeral, os algoritmos desenvolvidos proporcionan resultados satisfactorios para a análise das imaxes de fondo de ollo, mesmo cando a dispoñibilidade de datos de adestramento etiquetados é limitada.