Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study

  1. Pirnay, Jean-Paul
  2. Djebara, Sarah
  3. Steurs, Griet
  4. Griselain, Johann
  5. Cochez, Christel
  6. De Soir, Steven
  7. Glonti, Tea
  8. Spiessens, An
  9. Vanden Berghe, Emily
  10. Green, Sabrina
  11. Wagemans, Jeroen
  12. Lood, Cédric
  13. Schrevens, Eddie
  14. Chanishvili, Nina
  15. Kutateladze, Mzia
  16. de Jode, Mathieu
  17. Ceyssens, Pieter-Jan
  18. Draye, Jean-Pierre
  19. Verbeken, Gilbert
  20. De Vos, Daniel
  21. Rose, Thomas
  22. Onsea, Jolien
  23. Van Nieuwenhuyse, Brieuc
  24. Pang, Kim Win
  25. Metsemakers, Willem-Jan
  26. Van der Linden, Dimitri
  27. Chatzis, Olga
  28. Eskenazi, Anaïs
  29. Lopez, Angel
  30. De Voeght, Adrien
  31. Rousseau, Anne Françoise
  32. Tilmanne, Anne
  33. Vens, Daphne
  34. Gérain, Jean
  35. Layeux, Brice
  36. Vlieghe, Erika
  37. Baar, Ingrid
  38. Van Ierssel, Sabrina
  39. Van Laethem, Johan
  40. Guiot, Julien
  41. De Roock, Sophie
  42. Jennes, Serge
  43. Uyttebroek, Saartje
  44. Van Gerven, Laura
  45. Hellings, Peter W.
  46. Dupont, Lieven
  47. Debaveye, Yves
  48. Devolder, David
  49. Spriet, Isabel
  50. De Munter, Paul
  51. Depypere, Melissa
  52. Vanfleteren, Michiel
  53. Cornu, Olivier
  54. Verhulst, Stijn
  55. Boiy, Tine
  56. Lamote, Stoffel
  57. Van Zele, Thibaut
  58. Wieërs, Grégoire
  59. Courtin, Cécile
  60. Lebeaux, David
  61. Sartre, Jacques
  62. Ferry, Tristan
  63. Laurent, Frédéric
  64. Paul, Kevin
  65. Di Luca, Mariagrazia
  66. Gottschlich, Stefan
  67. Tkhilaishvili, Tamta
  68. Cesta, Novella
  69. Racenis, Karlis
  70. Barbosa, Telma
  71. López-Cortés, Luis Eduardo
  72. Tomás, Maria
  73. Hübner, Martin
  74. Pham, Truong-Thanh
  75. Nagtegaal, Paul
  76. Ten Oever, Jaap
  77. Daniels, Johannes
  78. Loubert, Maartje
  79. Iheb, Ghariani
  80. Jones, Joshua
  81. Hall, Lesley
  82. Young, Matthew
  83. Balarjishvili, Nana
  84. Tediashvili, Marina
  85. Tong, Yigang
  86. Rohde, Christine
  87. Wittmann, Johannes
  88. Hazan, Ronen
  89. Nir-Paz, Ran
  90. Azeredo, Joana
  91. Krylov, Victor
  92. Cameron, David
  93. Pitton, Melissa
  94. Que, Yok-Ai
  95. Resch, Gregory
  96. McCallin, Shawna
  97. Dunne, Matthew
  98. Kilcher, Samuel
  99. Soentjens, Patrick
  100. Lavigne, Rob
  101. Merabishvili, Maya
  102. Bacteriophage Therapy Providers
  103. Bacteriophage Donors
  104. Show all authors +
Journal:
Nature Microbiology

ISSN: 2058-5276

Year of publication: 2024

Volume: 9

Issue: 6

Pages: 1434-1453

Type: Article

DOI: 10.1038/S41564-024-01705-X GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Nature Microbiology

Bibliographic References

  • Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).
  • Dublanchet, A. & Fruciano, E. Brève histoire de la phagothérapie [A short history of phage therapy]. Med. Mal. Infect. 38, 415–420 (2008).
  • Uyttebroek, S. et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect. Dis. 22, e208–e220 (2022).
  • Pirnay, J.-P. & Kutter, E. Bacteriophages: it’s a medicine, Jim, but not as we know it. Lancet Infect. Dis. 21, 309–311 (2021).
  • Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954-17 (2017).
  • Eskenazi, A. et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat. Commun. 13, 302 (2022).
  • Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).
  • Pirnay, J. P. et al. The magistral phage. Viruses 10, 64 (2018).
  • Instructions for the Administration of Liquid Staphylococcal Bacteriophage Preparations for Injection (in Russian) (Ministry of Health and Ministry of Medical and Microbiological Industry of the USSR, 1987).
  • Instructions for the Application of Liquid Streptococcal Bacteriophage Preparations (in Russian) (Ministry of Health and Ministry of Medical and Microbiology Industry of the USSR, 1987).
  • Instructions for the Application of Combined Liquid Pyobacteriophage Preparations (in Russian) (Ministry of Medical and Microbiology Industry of the USSR, 1989).
  • Djebara, S. et al. Processing phage therapy requests in a Brussels military hospital: lessons identified. Viruses 11, 265 (2019).
  • Young, M. J. et al. Phage therapy for diabetic foot infection: a case series. Clin. Ther. 45, 797–801 (2023).
  • Vogt, D. et al. “Beyond antibiotic therapy” – Zukünftige antiinfektiöse Strategien – Update 2017 [Beyond antibiotic therapy – Future antiinfective strategies – Update 2017]. Unfallchirurg 120, 573–584 (2017).
  • Jennes, S. et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury—a case report. Crit. Care 21, 129 (2017).
  • Lebeaux, D. et al. A case of phage therapy against pandrug-resistant Achromobacter xylosoxidans in a 12-year-old lung-transplanted cystic fibrosis patient. Viruses 13, 60 (2021).
  • Van Nieuwenhuyse, B. et al. Bacteriophage-antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler. Nat. Commun. 13, 5725 (2022).
  • Van Nieuwenhuyse, B. et al. A case of in situ phage therapy against Staphylococcus aureus in a bone allograft polymicrobial biofilm infection: outcomes and phage-antibiotic interactions. Viruses 13, 1898 (2021).
  • Onsea, J. et al. Bacteriophage application for difficult-to-treat musculoskeletal infections: development of a standardized multidisciplinary treatment protocol. Viruses 11, 891 (2019).
  • Ferry, T. et al. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection. Nat. Commun. 13, 4239 (2022).
  • Racenis, K. et al. Use of phage cocktail BFC 1.10 in combination with ceftazidime-avibactam in the treatment of multidrug-resistant Pseudomonas aeruginosa femur osteomyelitis - a case report. Front. Med. 9, 851310 (2022).
  • Bakuradze, N. et al. Characterization of a bacteriophage GEC_vB_Bfr_UZM3 active against Bacteroides fragilis. Viruses 15, 1042 (2023).
  • Paul, K. et al. Bacteriophage rescue therapy of a vancomycin-resistant Enterococcus faecium infection in a one-year-old child following a third liver transplantation. Viruses 13, 1785 (2021).
  • Tkhilaishvili, T. et al. Successful case of adjunctive intravenous bacteriophage therapy to treat left ventricular assist device infection. J. Infect. 83, e1–e3 (2021).
  • Racenis, K. et al. Successful bacteriophage–antibiotic combination therapy against multidrug-resistant Pseudomonas aeruginosa left ventricular assist device driveline infection. Viruses 15, 1210 (2023).
  • Blasco, L. et al. Case report: analysis of phage therapy failure in a patient with a Pseudomonas aeruginosa prosthetic vascular graft infection. Front. Med. 10, 1199657 (2023).
  • Takeuchi, I. et al. The presence of two receptor-binding proteins contributes to the wide host range of staphylococcal twort-like phages. Appl. Environ. Microbiol. 82, 5763–5774 (2016).
  • Treepong, P. et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin. Microbiol. Infect. 24, 258–266 (2018).
  • Hrabák, J. et al. Regional spread of Pseudomonas aeruginosa ST357 producing IMP-7 metallo-β-lactamase in Central Europe. J. Clin. Microbiol. 49, 474–475 (2011).
  • Ceyssens, P. J. et al. Phenotypic and genotypic variations within a single bacteriophage species. Virol. J. 8, 134 (2011).
  • Kilmury, S. L. N. & Burrows, L. L. The Pseudomonas aeruginosa PilSR two-component system regulates both twitching and swimming motilities. mBio 9, e01310–e01318 (2018).
  • Nunn, D., Bergman, S. & Lory, S. Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J. Bacteriol. 172, 2911–2919 (1990).
  • Wehbi, H. et al. The peptidoglycan-binding protein FimV promotes assembly of the Pseudomonas aeruginosa type IV pilus secretin. J. Bacteriol. 193, 540–550 (2011).
  • Kropinski, A. M., Chan, L., Jarrell, K. & Milazzo, F. H. The nature of Pseudomonas aeruginosa strain PAO bacteriophage receptors. Can. J. Microbiol. 23, 653–658 (1977).
  • Koderi Valappil, S. et al. Survival comes at a cost: a coevolution of phage and its host leads to phage resistance and antibiotic sensitivity of Pseudomonas aeruginosa multidrug resistant strains. Front. Microbiol. 12, 783722 (2021).
  • Yoshida, H., Bogaki, M., Nakamura, M. & Nakamura, S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 34, 1271–1272 (1990).
  • Takenouchi, T., Sakagawa, E. & Sugawara, M. Detection of gyrA mutations among 335 Pseudomonas aeruginosa strains isolated in Japan and their susceptibilities to fluoroquinolones. Antimicrob. Agents Chemother. 43, 406–409 (1999).
  • Yonezawa, M. et al. Analysis of the NH2-terminal 87th amino acid of Escherichia coli GyrA in quinolone-resistance. Microbiol. Immunol. 39, 517–520 (1995).
  • Nakajima, A., Sugimoto, Y., Yoneyama, H. & Nakae, T. High-level fluoroquinolone resistance in Pseudomonas aeruginosa due to interplay of the MexAB-OprM efflux pump and the DNA gyrase mutation. Microbiol. Immunol. 46, 391–395 (2002).
  • Church, D., Elsayed, S., Reid, O., Winston, B. & Lindsay, R. Burn wound infections. Clin. Microbiol. Rev. 19, 403–434 (2006).
  • Rose, T. et al. Experimental phage therapy of burn wound infection: difficult first steps. Int. J. Burns Trauma 4, 66–73 (2014).
  • Pirnay, J.-P. Phage therapy in the year 2035. Front. Microbiol. 11, 1171 (2020).
  • Suh, G. A. et al. Considerations for the use of phage therapy in clinical practice. Antimicrob. Agents Chemother. 66, e0207121 (2022).
  • Luria, S. E. & Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).
  • Castledine, M. et al. Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. Elife 11, e73679 (2022).
  • Westra, E. R. et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr. Biol. 25, 1043–1049 (2015).
  • Gu Liu, C. et al. Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. mBio 11, e01462–20 (2020).
  • Fungo, G. B. N. et al. “Two Is Better Than One”: the multifactorial nature of phage-antibiotic combinatorial treatments against ESKAPE-induced infections. Phage 4, 55–67 (2023).
  • Torres-Barceló, C. & Hochberg, M. E. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 24, 249–256 (2016).
  • Torres-Barceló, C. Phage therapy faces evolutionary challenges. Viruses 10, 323 (2018).
  • Chan, B. K. et al. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 6, 26717 (2016).
  • Abedon, S. T. Phage-antibiotic combination treatments: antagonistic impacts of antibiotics on the pharmacodynamics of phage therapy? Antibiotics 8, 182 (2019).
  • Górski, A. et al. Phage as a modulator of immune responses: practical implications for phage therapy. Adv. Virus Res. 83, 41–71 (2012).
  • Instructions for the Application of a Liquid Staphylococcal Phage Preparation for Injection (in Russian) (Ministry of Health of the USSR, 1986).
  • Dedrick, R. M. et al. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nat. Med. 27, 1357–1361 (2021).
  • Onsea, J. et al. Bacteriophage therapy for difficult-to-treat infections: the implementation of a multidisciplinary phage task force (The PHAGEFORCE Study Protocol). Viruses 13, 1543 (2021).
  • Regulation (EU) No 536/2014 OF THE European Parliament and of the Council of 16 April 2014 on Clinical Trials On Medicinal Products For Human Use, And Repealing Directive 2001/20/EC (Official Journal of the European Union, 2014).
  • Merabishvili, M. et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE 4, e4944 (2009).
  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
  • Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).
  • Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinformatics 70, e102 (2020).
  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
  • Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).
  • Song, W. et al. Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 47, W74–W80 (2019).
  • Kutter, E. Phage host range and efficiency of plating. Methods Mol. Biol. 501, 141–149 (2009).
  • Friman, V. P. et al. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J. Evol. Biol. 29, 188–198 (2016).
  • Appelmans, R. Le dosage du Bacteriophage. (in French) Compt. Rend. Soc. Biol. 85, 1098 (1921).
  • Burrowes, B. H., Molineux, I. J. & Fralick, J. A. Directed in vitro evolution of therapeutic bacteriophages: the Appelmans Protocol. Viruses 11, 241 (2019).
  • Department for Industrial Bacterial and Viral Preparations. Guidelines for the Production of Combined Pyobacteriophage Solutions. N242-82 (in Russian) (Ministry of Health of the USSR, 1982).
  • Guidelines for the Production of Staphylococcal Bacteriophage Solutions for Injection (in Russian) (Ministry of Health of the USSR, 1986).
  • Department for the Monitoring of the Introduction of New Medicines and Medical Equipment. Staphylococcal Bacteriophage Solutions for Injection. BФC 42-68BC-87 (in Russian) (Ministry of Health of the USSR, Pharmacopoeia Commission, 1987).
  • Pharmacopoeia Article Concerning Combined Pyobacteriophage Solutions. ФC 42-240BC-8 (in Russian) (Ministry of Health of the USSR, Pharmacopoeia Commission, 1989).
  • Merabishvili, M., Pirnay, J.-P. & De Vos, D. Guidelines to compose an ideal bacteriophage cocktail. Methods Mol. Biol. 1693, 99–110 (2018).
  • Duyvejonck, H. et al. Evaluation of the stability of bacteriophages in different solutions suitable for the production of magistral preparations in Belgium. Viruses 13, 865 (2021).
  • Merabishvili, M. et al. Stability of bacteriophages in burn wound care products. PLoS ONE 12, e0182121 (2017).
  • Astudillo, A., Leung, S. S. Y., Kutter, E., Morales, S. & Chan, H. K. Nebulization effects on structural stability of bacteriophage PEV 44. Eur. J. Pharm. Biopharm. 125, 124–130 (2018).
  • Carrigy, N. B. et al. Anti-tuberculosis bacteriophage D29 delivery with a vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler. Pharm. Res. 34, 2084–2096 (2017).
  • Aslam, S. et al. Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the United States. Open Forum Infect. Dis. 7, ofaa389 (2020).
  • Cano, E. J. et al. Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity. Clin. Infect. Dis. 73, e144–e151 (2021).
  • Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).
  • Brown, C. L. et al. mobileOG-db: a manually curated database of protein families mediating the life cycle of bacterial mobile genetic elements. Appl. Environ. Microbiol. 88, e0099122 (2022).
  • Starikova, E. V. et al. Phigaro: high-throughput prophage sequence annotation. Bioinformatics 36, 3882–3884 (2020).
  • Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
  • Gao, F. & Zhang, C. T. GC-Profile: a web-based tool for visualizing and analyzing the variation of GC content in genomic sequences. Nucleic Acids Res. 34, W686–W691 (2006).
  • Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).
  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
  • Adams, M. H. Bacteriophages (Interscience Publishers, 1959).
  • Harris, P. A. et al. Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 (2009).
  • Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281 (2012).
  • McDonnell, A. et al. Efficient delivery of investigational antibacterial agents via sustainable clinical trial networks. Clin. Infect. Dis. 63, S57–S59 (2016).
  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).
  • Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
  • Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017).
  • Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013).
  • Massicotte, P. & South, A. rnaturalearth: world map data from natural earth. R package version 0.3.2.9000 https://cran.r-project.org/package=rnaturalearth (2023).