Publicacións nas que colabora con Manuel Mateo Pérez Encinas (19)
2024
-
Impact of somatic gene mutations on the risk of thrombosis in myelofibrosis
Leukemia
-
Integrating AIPSS-MF and molecular predictors: A comparative analysis of prognostic models for myelofibrosis
HemaSphere
-
The prognostic impact of non-driver gene mutations and variant allele frequency in primary myelofibrosis
American Journal of Hematology
-
Validation of the Artificial Intelligence Prognostic Scoring System for Myelodysplastic Syndromes in chronic myelomonocytic leukaemia: A novel approach for improved risk stratification
British Journal of Haematology, Vol. 204, Núm. 4, pp. 1529-1535
2023
-
A prognostic model based on gene expression parameters predicts a better response to bortezomib-containing immunochemotherapy in diffuse large B-cell lymphoma
Frontiers in Oncology, Vol. 13
-
Corrigendum: Evaluation of the Stellae-123 prognostic gene expression signature in acute myeloid leukemia(Front. Oncol., (2022), 12, (968340), 10.3389/fonc.2022.968340)
Frontiers in Oncology
-
Machine Learning Improves Risk Stratification in Myelodysplastic Neoplasms: An Analysis of the Spanish Group of Myelodysplastic Syndromes
HemaSphere, Vol. 7, Núm. 10, pp. E961
-
Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis
HemaSphere, Vol. 7, Núm. 1, pp. E818
2022
-
Erratum: Gene expression profiling identifies FLT3 mutation-like cases in wildtype FLT3 acute myeloid leukemia (PLoS ONE (2021) 16:2 (e0247093) DOI: 10.1371/journal.pone.0247093)
PLoS ONE
-
Evaluation of the Stellae-123 prognostic gene expression signature in acute myeloid leukemia
Frontiers in Oncology, Vol. 12
-
Prognostic Stratification of Diffuse Large B-cell Lymphoma Using Clinico-genomic Models: Validation and Improvement of the LymForest-25 Model
HemaSphere, Vol. 6, Núm. 4
2021
-
Detection of new drivers of frequent B-cell lymphoid neoplasms using an integrated analysis of whole genomes
PloS one, Vol. 16, Núm. 5, pp. e0248886
-
Gene expression profiling identifies FLT3 mutation-like cases in wild-type FLT3 acute myeloid leukemia
PloS one, Vol. 16, Núm. 2, pp. e0247093
-
Personally Tailored Survival Prediction of Patients With Follicular Lymphoma Using Machine Learning Transcriptome-Based Models
Frontiers in Oncology, Vol. 11
-
Safety of FLT3 inhibitors in patients with acute myeloid leukemia
Expert Review of Hematology, Vol. 14, Núm. 9, pp. 851-865
-
Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data
Leukemia, Vol. 35, Núm. 10, pp. 2924-2935
2020
-
FLT3 inhibitors in the treatment of acute myeloid leukemia: Current status and future perspectives
Minerva Medica, Vol. 111, Núm. 5, pp. 427-442
-
Improved personalized survival prediction of patients with diffuse large B-cell Lymphoma using gene expression profiling
BMC Cancer, Vol. 20, Núm. 1