Adrián
Mosquera Orgueira
Complexo Hospitalario Universitario de Santiago
Santiago de Compostela, EspañaPublicacións en colaboración con investigadores/as de Complexo Hospitalario Universitario de Santiago (23)
2024
-
Prognostic and survival factors in head and neck extra-nodal non-Hodgkin's lymphoma
Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology
2023
-
Machine Learning Improves Risk Stratification in Myelodysplastic Neoplasms: An Analysis of the Spanish Group of Myelodysplastic Syndromes
HemaSphere, Vol. 7, Núm. 10, pp. E961
-
Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis
HemaSphere, Vol. 7, Núm. 1, pp. E818
2022
-
A Machine Learning Model Based on Tumor and Immune Biomarkers to Predict Undetectable MRD and Survival Outcomes in Multiple Myeloma
Clinical cancer research : an official journal of the American Association for Cancer Research
-
Evaluation of the Stellae-123 prognostic gene expression signature in acute myeloid leukemia
Frontiers in Oncology, Vol. 12
-
Immune Checkpoint Inhibitors in Acute Myeloid Leukemia: A Meta-Analysis
Frontiers in Oncology, Vol. 12
-
Prognostic Stratification of Multiple Myeloma Using Clinicogenomic Models: Validation and Performance Analysis of the IAC-50 Model
HemaSphere, Vol. 6, Núm. 8
-
Unsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group
Blood cancer journal, Vol. 12, Núm. 4, pp. 76
2021
-
Detection of new drivers of frequent B-cell lymphoid neoplasms using an integrated analysis of whole genomes
PloS one, Vol. 16, Núm. 5, pp. e0248886
-
Gene expression profiling identifies FLT3 mutation-like cases in wild-type FLT3 acute myeloid leukemia
PloS one, Vol. 16, Núm. 2, pp. e0247093
-
Personalized Survival Prediction of Patients With Acute Myeloblastic Leukemia Using Gene Expression Profiling
Frontiers in Oncology, Vol. 11
-
Personally Tailored Survival Prediction of Patients With Follicular Lymphoma Using Machine Learning Transcriptome-Based Models
Frontiers in Oncology, Vol. 11
-
Safety of FLT3 inhibitors in patients with acute myeloid leukemia
Expert Review of Hematology, Vol. 14, Núm. 9, pp. 851-865
-
Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data
Leukemia, Vol. 35, Núm. 10, pp. 2924-2935
-
The safety profile of FLT3 inhibitors in the treatment of newly diagnosed or relapsed/refractory acute myeloid leukemia
Expert Opinion on Drug Safety, Vol. 20, Núm. 7, pp. 791-799
-
Variable expressivity and allelic heterogeneity in type 2 familial partial lipodystrophy: The p.(thr528met) lmna variant
Journal of Clinical Medicine, Vol. 10, Núm. 7
2020
-
FLT3 inhibitors in the treatment of acute myeloid leukemia: Current status and future perspectives
Minerva Medica, Vol. 111, Núm. 5, pp. 427-442
-
Improved personalized survival prediction of patients with diffuse large B-cell Lymphoma using gene expression profiling
BMC Cancer, Vol. 20, Núm. 1
-
Novel Mutation Hotspots within Non-Coding Regulatory Regions of the Chronic Lymphocytic Leukemia Genome
Scientific Reports, Vol. 10, Núm. 1
2019
-
A Three-Gene Expression Signature Identifies a Cluster of Patients with Short Survival in Chronic Lymphocytic Leukemia
Journal of Oncology, Vol. 2019